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The inelastic transverse form factor for electromagnetic excitation of the giant resonance is discussed and 
calculated on the basis of several different models. Particular attention is paid to the Brown theory of 
the giant resonance, which is reformulated here in such a way that no free parameters are left over, i.e., all 
parameters are determined from other experiments. Numerical calculations are carried out for C12 and com
pared with the 180° electron scattering experiments and with photoabsorption data. I t is found that the 
Brown theory successfully predicts the dip in the squared form factor and the shift in the resonance energy 
as the momentum transfer is changed, both of which are observed experimentally, and neither of which is 
predicted by the collective models for the charge motion of the giant resonance. More detailed comparison 
with the experimental data allows us to distinguish between different versions of the Brown theory, and it 
is found that the no-free-parameter results are consistent with all the experimental data considered. Results 
for all the models considered are presented and discussed. 

I. INTRODUCTION 

THE nature of the giant dipole resonance has long 
been an interesting question in nuclear physics. 

Experimentally, it is known that the giant resonance 
exhausts most of the sum rule for electric dipole matrix 
elements. It is the dominant element of structure in 
low-energy nuclear physics and this is why it has 
received so much attention both experimentally and 
theoretically. Goldhaber and Teller1 proposed that the 
giant resonance represents an oscillation of the neutrons 
against the protons in the nucleus. Such a model gives 
an electric dipole matrix element equal to the sum rule 
value, but is incapable of explaining the more detailed 
features of the giant resonance, such as its splitting into 
several peaks.2'3 Wilkinson4 realized that if one sums 
the individual particle transition strengths in an oscil-
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f A. P. Sloan Foundation Fellow. 
1 M. Goldhaber and E. Teller, Phvs. Rev. 74, 1046 (1948). 
2 W. C. Barber and W. R. Dodge/Phys. Rev. 127, 1746 (1962). 

See also W. C. Barber and W. R. Dodge, Contributions to the 
Karlsruhe Photonuclear Conference 1960 (Erstes Physikalisches 
Institut der Universitat Heidelberg, Heidelberg, 1961), p. A7. 

3 N. W. Tanner, G. C. Thomas, and E. D. Earle, Proceedings 
of the Rutherford Jubilee International Conference, Manchester, 
1961, edited by J. B. Birks (Academic Press Inc., New York, 
1961), paper C2/30. 

4 D. H. Wilkinson, Physica22, 1039 (1956): Phys. Rev. Letters 
3, 388 (1959). 

lator potential, or oscillator potential with a spin-orbit 
force, then one again finds a transition strength which 
exhausts the dipole sum rule. The difficulty in this case 
is that stripping experiments, and calculation of con
figuration energies from neighboring nuclei, show that 
these single-particle states lie too low in energy to 
explain the appearance of the giant dipole resonance 
in the region 15—25 MeV. Brown and his collaborators 
here pointed out that if one regarded the resonance 
state as made up of a linear combination of particle-hole 
states, then the residual particle-hole interaction being 
of opposite sign to the particle-particle interaction, and 
hence repulsive would tend to drive the resonance 
states up in energy. Several calculations of energy levels 
and relative dipole strengths in C12 and O16 have been 
carried out on the basis of this model by Brown and his 
co-workers5~~8 and an intensive application of the 
particle-hole idea to other states and other nuclei has 
been undertaken by Gillet.9 A detailed intermediate 
coupling calculation on odd-parity states in light nuclei 

8 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472 
(1959). 

6 G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22, 
1 (1961). 

7 N. Vinh Mau and G. E. Brown, Nucl. Phys. 29, 89 (1962). 
8 G. E. Brown, L. Castillejo, and J. A. Evans, Contributions to 

the Karlsruhe Photonuclear Conference 1960 (Erstes Physikalisches 
Institut der Universitat Heidelberg, Heidelberg, 1961), p. B4. 

9 V. Gillet, thesis, Universite de Paris, Saclay, 1962, C.E.A. 
Report No. 2177 (unpublished). 
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carried out earlier by Elliott and Flowers10 also shows 
that the residual interactions raise the energy of the 
dipole states. The results for the T— 1, J*= 1~ states in 
O16 turn out to be very similar in the two calculations. 

One of the most powerful tools available for eluci
dating nuclear structure is inelastic electron scattering. 
The interaction of electrons with nucleons is well known 
and therefore, by varying the momentum transferred 
to the nucleus at a fixed energy loss, one can map out 
the Fourier transform of the transition charge and 
current densities and hence the charge and current 
densities themselves. This gives one much more de
tailed information about the nature of a state than does 
just the total photon absorption width, which is just 
one number, for example. In this paper we shall study 
the question of what one can learn about the nature of 
the giant dipole resonance through the use of inelastic 
electron scattering. In Sec. I I we give a brief review of 
inelastic electron scattering and also discuss the relation 
to photoabsorption. In Sec. I l l we give a discussion of 
the Brown theory in terms of wave functions and a 
"Tamm-DancoiF approximation. While this discussion 
is merely a reformulation of the Brown theory, it does 
help one to understand a little more clearly, we feel, 
such things as the nature of the approximations in
volved, what force is to be used, how one is to experi
mentally identify the unperturbed configuration ener
gies and the relation to the intermediate-coupling 
calculations. I t also allows one to easily keep track of 

all the phases involved, which in a calculation such as 
this is a nontrivial matter. 

Section I I I contains a detailed discussion of the 
calculation of the energy matrix and electron scattering 
matrix elements in the Brown theory. The electron 
scattering cross section based on the Goldhaber-Teller 
model has been calculated in a previous paper.11 The 
cross section given by the Steinwedel-Jensen hydro-
dynamical model is discussed in Appendix A. One of 
the major conclusions of the present work is that the 
various models give completely different inelastic form 
factors. In Sec. IV an application to C12 is carried out 
and the results for the transverse electric dipole form 
factors are compared with the recent results of 
Goldemberg et a/.,11'12 who look at electron scattering 
in the backward direction with the 75-MeV Mark I I 
linear accelerator at Stanford. A second conclusion of 
the present paper is that the Brown theory gives very 
characteristic form factors which are quantitatively in 
agreement with the experimental results both as to 
shape and magnitude. Similar results have been ob
tained for O16 and will be discussed in a forthcoming 
paper.13 Section V contains a discussion and summary. 

II. INELASTIC ELECTRON SCATTERING 

The cross section for inelastic electron scattering 
from the ground state to a discrete excited state is given 
in Born approximation, with the neglect of nuclear re
coil and the electron mass with respect to its energy, by 

da &2 87 r a 2 r «> 1 

-(//<-/«)= VL(d) E 1 
dQ h A 4 L J=o2 / r l - l 

(Jf\\Mj(q)\\J%)V 

+ VT{6) £ (| (/,||2V-(«)||/<)|2+1 (J,||7y>fo)IWI2)] • CD 
J - I 2 / H - 1 J 

ki and k2 are the initial and final electron wave numbers, q2= (k2—ki)2 and A2=q2— (&2—&i)2 are the three- and 
four-momentum transfers and 6 is the electron scattering angle. We further have 

A 4 6 
Vi(d)=—2hhcosi~, 

The multipole operators are given by 

dr 0-1 
sin2- (k1+ki)

i-2k1k2 cos2- , 

(2) 

MJM(q)= dxpN(x)jj(qx)YjM(tix), 

TjMel(q)=- [dx[)N(x)-(vXjj(qxWjjxM(ti*))+qijj(qx)VjJiM(V*)-Mx)'], 
qj 

rju™*(q)= (dxlM*)- ( V X i J ( ? x ) D ^ 1 ^ ( 0 , ) ) + ; V ( ^ ) D ^ 1
M ( f i I ) - j w ( x ) ] . 

(3) 

10 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) A242, 57 (1957). 
11 J. Goldemberg, Y. Torizuka, W. C. Barber, and J. D. Walecka, Nucl. Phys. 43, 242 (1963). 
12 F. H. Lewis, Jr., J. D. Walecka, J. Goldemberg, and W. C. Barber, Phys. Rev. Letters 10, 493 (1963). 
18 F. H. Lewis, Jr. (to be published). 
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epjv(x), ejj\r(x), £i*iv(x) are the nuclear charge, current, and magnetization density operators, and 

®jjiM(ty = E (JtnlX | / l / i f ) YJm(Q)ex 

are the vector spherical harmonics.14 The operators TjMel(q) and TjMmag(q) are exactly the same operators which 
describe the emission and absorption of real photons, only in tha t case one has a relation between the momentum 
transfer and the energy loss, ftc\q\ = AE^E/it The total integrated photoabsorption cross section to a discrete 
level can be given in terms of these same operators by (see Appendix B) 

r (fie)2 1 r i / II /E /Al l \ | 2 | / || /Efi\\\ \ | 2 - | 
/ a&h3(E)dE=(27rYa £ (/,\\TA — ) /,) + (// r ^ —) KO ' <4> 

Jonelevel £/* 2/<+l / U \ | | \ f c? / | | / I l \ | | XflC/\\ / I J 

We shall be concerned with the reduced matrix elements We will assume that v(ij) is a nonsingular potential 
of the various multipole operators as a function of q which fits low-energy nucleon-nucleon scattering. This, 
and will refer to these as the inelastic form factors. One 0f course, does not allow us to account for nuclear 
can thus get one point on the transverse form factors saturation. We will find, however, tha t most of the 
from photoabsorption. The transverse and longitudinal m a t r i x e l e m e n t s o f t h e potential involved in our cal-
form factors can be separated experimentally m electron , ,. , . , ,.£ , .,, . £ . , , . ^ . , , . r . ^ j. r i / . v r r ,_ culation can be identified with energies of neighboring 
scattering by doing experiments at fixed q but different , . , . , , „ , i r . , ™r •« 
B. In the backward direction one has VL{*) = 0 SO one ™**> " ^ c h w e s h a l l t a k e f r0,m e f e r i m e n t - We will 
sees just the transverse form factors. t h u s b e l e f t .Wlth s i n 8 l e particle-hole matrix elements 

of v(ij) and it is known, a t least in doubly magic + 2 
III. BROWN THEORY OF THE GIANT RESONANCE n u c l e o n n u c i e i « . " that the singular nature of the po-

In this section we shall describe a procedure which is tential does not drastically change the two-particle 
merely a reformulation of the Brown theory. Hopefully, energies and wave functions. 
one can gain some further insight into the theory and We shall deal only with nuclei which have doubly 
into the nature of the approximations involved. The c l o s e d j s h e U s - F o r t h e g r o u n d s t a t e o f s u c h n u c l e i w e 

nuclear Hamiltonian is given by w i U u g e t h e s i m p l e s h e l l m o d e l w a v e f u n c t i o n ( w e s h a U 

Ji , v J- , x • , v take nuclei with 2 shells, as in C12 as an illustration; 
H=ET(i)+Z v(i,j). (5) the results are immediately generalized). We write 

#o***(l,V • ' 2^- 0 )^ E (-l)pP[*y0t(l)*y,-it(2). • ' ^ t f t f a ^ + l ) - • * - / • * ^ A ) ] , (6) 

where the indices on the single-particle wave functions are m3-0 and mh the third components of angular momentum 
and isotopic spin. We assume the single-particle wave functions are eigenstates of l2, s2, t2, j 2 , j z , and tz. The single-
particle states don't have to be specified any further than this for the purposes of our present discussion. The 
operator l/((2iVy0) !)

1/2 Y,P(— 1)PP where N3'Q=2j0+l, is the usual antisymmetrization operator containing a sum 
over all permutations of the 2iVy0 particles with a sign equal to the signature of the permutation. This wave function 
is antisymmetric, normalized, and an eigenstate of J2, /2 , T2, Tz all with eigenvalues 0. Similarly 

1 
#o«w(lA- • ' 2 ^ ) = — — — E (-l)PJPC^t(l). • -^t(iV»*y*(Nj+D- • - ^ 1 ( 2 ^ . ) ] . (7) 

The ground-state wave function is then taken to be 

1 1 1 
f o = ^ o = E (-l)pP[#ow o Z o y°(l- • -2NJo)$onlj(2Nh+l' • -A)l- (8) 

((2Nj)^((2Nh)^(A^p ° J 

This wave function is normalized, antisymmetric and has / = T = 0 . We will a t tempt to describe the giant reso
nance electric dipole states by taking linear combinations of states of single-particle excitation which have un-

14 A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957). We use Edmonds* 
notation. 

15 J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys. (N. Y.) 18, 339 (1962). 
16 J. F. Dawson and J. D. Walecka, Ann. Phys. (N. Y.) 22, 133 (1963). 
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perturbed configuration energies (to be identified later) lying closest to the observed value of the giant resonance 
energy. A single hole in the jo shell for example can be written as 

(-l)f-Xo 
S ^ - ^ t t , •' - 2 ^ 0 - l H _ E (-DpP[#y0t(l)- •' [^o-xol- • - ^ i ( 2 ^ , - 1 ) ] , (9) 

where the state $_mo_x0 has just been omitted from the product wave function as symbolized by the heavy brackets. 
This wave function has J2=io(io+l) , JZ=MQ, T2 = J-§, TZ=\0, as is easily verified. Note that an extra phase 
(— l)^~xo must be added to achieve this. A particle-hole state of definite j can now be constructed by taking 

1 
$jMjTMT

{nlhhnmhk)~l(^2,--'2Nh) = £ £ (jiniijomolJijoJMj) 

1 
X (JXiiXo|i \TMT)- E ( - i m < W n o t o r l ( l ' * *2Nh- l)*«1x1»^(2^y0)]. (10) 

U2Nh)l)»* * 
Note that we have now defined a definite order of coupling. The total basis wave function describing a given 
particle-hole state is 

1 1 1 
®JMjTMT{nlllhHmhk)~l{^' 'A)= 

( ( 2 ^ O ) ! ) ^ ( ( 2 ^ ) I ) 1 / 2 ( ^ 0 1 / 2 

X L i-iyPl^jMjTMT^111^^10^'1^- '2Nh)$onh'(2Njo+l- • - i* ) ] . (11) 
p 

To describe the giant resonance, we must have states of odd parity and so the particle states we mix in must have 
opposite parity from the states in the hole-shell. These states lie fairly high (~1 oscillator spacing or 15 MeV) in 
nuclei. We now try to construct an excited-state wave function by taking linear combinations of the basis states 
(we use the labels 1 for particles or 2 for holes). 

VjMjrMT(l--A)= E a / r ( ^ i i ) ( * 2 ) - ^ / ¥ j r ¥ r ( ^ u i ) ( n 2 W 2 ) - i ( i . . . i ) , (12) 
nihji 

If we try to solve the Schrodinger equation in this basis, we have 

HtyjMjTMT = E&JMjTMT (13) 

and, inserting the above wave functions and using their orthonormality properties, we find 

L K<S>K\H\<i>Kf)-ESKK>lajTK' = 0, (14) 
K' 

where K stands for a pair (nihji) {mhj^)~l. Diagonalization of this set of linear equations gives us the energy 
eigenvalues E and sets of coefficients aK. We assume that the two-particle potential has the form 

v = fl(1) (fi2)+fl(2) (ri2)crr <r2+fl(3) (fu) *i- T2+fl(4) (r12) (<rr cr2) (*i* *2). (15) 

One can now make a multipole expansion of this potential and then calculate matrix elements between the 
appropriate wave functions using the identity 

\(A !)1/2 P i<i-i (A !) l /2 P / 

- (*i(l • • • A) | E 0(i,j) IE ( - l) 'P*.(l • • • A)). (16) 

This allows one to separate the interactions into both direct and exchange core-core, core-shell-1, shell-1-shell-1, 
particle-core, and particle-shell-1 terms. The first four of these are easily expressed in terms of reduced matrix 
elements of the relevant multipole operator and direct and exchange radial matrix elements.17 For the last term, 
the interaction of the last particle and the shell-1 which has the state — w2—A2 missing, one finds, due to the 

17 See, for example, J. P. Elliott and A. M. Lane, in Handbuch der Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 
39, p. 241. 
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antisymmetry of the wave functions, an expression which contains a sum over all occupied m2\2 states. If one adds 
to this sum the term coming from the state — m2—X2, one has a sum over all m2\2 and this gives a term diagonal 
in (hji), the extra particle state, independent of / and T, and exactly of the same form as the first four terms 
mentioned above. This additional term must then be subtracted to obtain the correct expression. These remaining 
terms, which are usually referred to as the "particle-hole interaction" now contain the entire dependence on the 
coupling, that is on / and T. The off-diagonal matrix elements of H only involve simple matrix elements of v. 
Since T(i) is a single-particle scalar, it cannot contribute to the off-diagonal matrix elements as long as one of the 
quantum numbers I1J1I2J2 is changed. Actually, it turns out that in light nuclei, it is sufficient to consider only 
particle-hole states for which hji(hj2)~

l completely characterize the states. This simplifies things and we will 
henceforth assume this to be true. The resulting expression, where the diagonal terms have been regrouped and 
rewritten as the expectation value of H between appropriate wave functions is given exactly by 

{®JMjTMT
WWh,nm'Wh,)~l\H\®jMjTM^^ 

- L E (-i)X2'-xK-i)m2'~M2(-i)^^ 
W1X1 w i ' X i ' 
W2X2 m2'\2f 

X (iXi'JX/1 * \TMT) (|XI|X2I \ hTMT)L(J2-m2~\2j1
fm1

f\i \ v | j%'-m%'-\ijm&i) 

-(J2-fn2-\2Jxm1%
,\v\jimi\iJ2--m2—\2)'], (17) 

where we have introduced the wave function for A + 1 particles, 

1 1 
4>wlM

niZiyi(l'' -4 + 1) = £ ( - l ) p Pl>o( l - • -Afa^HA+Vl (18) 
C4!)1/2(G4 + 1)01/2 P 

in one term above, with a corresponding increase of the number of terms in H. All of the / and T dependence is 
contained in the last term which involves just simple matrix elements of v, which is to be taken as the free nucleon-
nucleon interaction according to our discussion. The extra phases come from counting permutations in taking 
matrix elements. The expression in brackets above can be identified with the ground-state energy of the nucleus 
in question with A particles and differences in energy between nuclei with Azkl particles and the ground state of 
the A particle nucleus, energy here meaning that energy described by H or the total kinetic and potential energy 
of the nucleons in the nucleus. This is just the total nuclear mass minus the rest energy of the nucleons making 
it up. This empirical identification of a large part of the relevant matrix element is the same as that used in the 
usual intermediate coupling calculation. The term C(^miXinih/l|^| &mi\inihh) — (&o\H\ <I>o)] gives the interaction 
of the last particle with all shells completely closed. The term which must be subtracted to account for this is 
contained in the matrix elements of v left over. The above expression is evidently independent of mi and Xi. The 
remaining expression in braces [after canceling the (<I>o|#| 3>o)]] is just (O m 2 x 2

( n 2 t e r l | # | <bm2\2
{n2Hh)~l) and gives 

the interaction between the closed shell and itself, the closed shell and the shell-1, and the shell-1 and itself. It is 
again independent of m2 and X2. We shall call the diagonal term in brackets just E0((nihji) (n2l2j2)~

l). It is evidently 
the unperturbed configuration energy. The angular momentum in the matrix elements of v appearing in the last 
part of the above expression can be recoupled using standard techniques.14 We can thus write 

{^jMjTMT
Wh'hf) W * ' > - i IHI ®JMjTMT^hh) <»**>-1) = bhnh2>i£h'hth>hE^(nihh) W272)-1) 

+ ((ni'h'ji')(n2Vj2T
lJMjTMT\ »(1,2) | (mtxjd{n2l2j2)^JMjTMT), (19) 

where 

( W h ' j i ) W U ^ Y ^ J M J T M T I w ( l , 2 ) I (nJiji){n2l2j2)~
lJMjTMT) 

--ZZ(2J+1)(2T+1)\J1 J2 ^ij* * T\ 

Xl(Uiji)JBj; (i h)TMT\v(l,2)\UiJ2)JMj; (J \)TMT)- ( - l ) A ' + ^ ( - l ) M - * 

X(U*Ji')JSj; (U)TMT\v(ly2)\(j\J2)JMj; ( H O T r ) ] - (20) 

To proceed further we need to calculate the matrix elements of v. In the following we discuss techniques for doing 
this. 
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We assume that we can factor out the isospin dependence of t>(l,2) as a scalar product of two tensors of rank K 
in isospace: 

v(l,2) = v(thr2)W(l,2), where W= J7*(l). UK(2). (21) 
We define 

TK-UK=i:(-l)*TKqUK-q 
Q 

as the scalar product of tensors T(Kq), U(Kq). (Here we only need to consider cases where K=0 or 1.) 

( ( H ) M f r | ^ l ( H ) W ? r ) = ( - l ) w - ! ' { * *}( i l l^( l ) l l i ) (4 l l^(2) | | i ) . (22) 

Doing the sum on T} we obtain 

= - E ( 2 J + i ) , , . ' ill^(i)ll4Xill^(2)||i)r(-i)1-M| ' * 

X(OVi2)JM|Kri,r2)| ( J V O ^ - C - I ) ^ * - 7 - 5TK((i2i/)JM|^fi,r2)| (jij2')«/M)l . (23) 
2 r + i J 

Next let us take v (1,2) to be independent of isospin, W— 1. This is actually no loss of generality since any isospin 
factor can be reduced to a combination of space- and spin-exchange operators by making explicit use of the anti
symmetry of the wave functions. We see that the exchange term vanishes for T= 1, K=0, and the isospin factors 
give unity in the direct term. 

J 
- E Of+1)1* * 

' IjY jY 

(OYiOJM\Kri,r2)I (jih')JM). (24) 

One can now proceed in two different ways. First let us suppose tf (ri,r2) is a scalar force with possibly some spin 
dependence: 

v(thr2) = vi(ru)+V2(ru)<ri*<T2, fi2= |ri—r2 |. (25) 

We evaluate matrix elements of v in terms of Slater integrals as follows. For the direct term we write 

»i('i*) = f /KMCKW-CKV), (26) 

where 
2 ^ + 1 r1 

fK{f\r%)= / ?>i(ri2)P2s:(cos0i2)icos0i2, rn={r^+ri—2fif2 cos0i2)
1/2 

2 7_i 
and 

C*,(l)= (4T/2K+iy'WKq(eh<l>i). 

Here PK(COS6) is the usual Legendre polynomial and the Yim{6$) are spherical harmonics as defined in Ref. 14. 
Then for the direct term we obtain 

((nifhfjif) WUti)-lJMjTMT| n(l,2) | (mhji)(nJrfJrVMjTMT) 

= - £ FK(-i)^+HJ 1% J l } ( ( / i m i l c * ( i ^ (27) 
where 

Jo Jo 

is the usual Slater integral, and Rni(r) denotes the radial wave function. Similarly for the spin-dependent term 
we can define a tensor operator 

X i ^ W s I CK«<rw(Kqlqf\Kl\ix), (28) 



E L E C T R O M A G N E T I C S T R U C T U R E OF G I A N T D I P O L E R E S O N A N C E B855 

and therefore 
vt(r^a1-ot=,L (-l)K+1^fK(rhri)X^iKi)-X^K^(2), (29) 

where again JK is defined as before in terms of v2. We obtain 

((»i';i'ii')(«272
,i2')-l/MJriifrb2(ri2)ff1.<r2|(«1/1i1)(w2/2i2)-1/iifJrjifr) 

= - E ( - I )A+*W-*HFJ J2 jl l((/i'i)i1'||Xx«c-1>(i)||(/ii)ii)((/«i)i*ll^x<JC-1)(2)||(/.'l)ii'). (30) 

Using these results along with the identities 

((/'*)/l|CKl|(/|)i)=(-l)^((2/+l)(2i+l))1^i Q _J[ J, 

(a'§)/ll^x<iC-1>||(^)i)=((2i'+l)(2i+l)(2X+l))^ 

2 ^ 2X 

r / in 
2 2 A 

1/ i x 

(31) 

(/'l|cK||0(ilhlll), 

one can calculate the matrix elements of v in terms of Slater integrals FR. For the case of ordinary forces in zero 
range 

v(thr2) = va5(r1-r2), 
one obtains 

2K+1 r» 
FK=vo / Rnin^(r)RmnAr)Rnlh{r)Rn2i^{rydr. (32) 

47T Jo 

An alternative method in the case where we take our single-particle states to be harmonic oscillator wave 
functions is to reduce the matrix elements to integrals over the relative coordinate (Talmi integrals18). This is 
more useful when z>(ri,r2) involves arbitrary types of exchange forces, and it is particularly convenient for studying 
the effects of varying the potential well shape v(|ri—r2|). The procedure is first to go over to LS coupling: 

((jifJ2)JM\v(tl,r2)\ (jiJt')JM)= E ((2L+1)(2L'+1)(2S+1)(2S'+1))^ 
LS 

L'S' 

X((2ii+l)(2jV+l)(2is+l)(2jY+l))^ 

l\ V2 L 

l i e 
2 2 ^ 

Jl J* 

j l\ 12 L 

x i 
2 2 

[jl j* J} 

X((/i72)L(i $)SJM\V(H,U)| (hh')L'(i i)S'JM). (33) 

For simplicity let us discuss the case where v contains no tensor or spin-orbit forces. Let us assume that we can 
factor out the spin-dependent part, 

Hr1,r2)=F(f12)-(r(l,2), 

({Uh)L(h h)SJM\v{xhX2)| («,')£'(* \)S'JM) 

8LL'$S& 
(34) 

((2L+1)(2S+1))"2 
((hh)SMl,2)\\{H)S)((h'h)L\\V(r12)\\(hh')L). 

Next we employ the so-called transformation brackets19 to separate the center of mass and relative coordinates 
for two particles in a harmonic oscillator, 

N£nl 
N'&'n'V 

X (N'&'n'V,L | nJjfo'h',L) (Nn(£T)L\\ F(ri2) | |W (£'/')£). (35) 
1 8 1 . Talmi, Helv. Phys. Acta 25, 185 (1952). 19 M. Moshinsky, Nucl. Phys. 13, 104 (1959). Note that our bracket (N&fd,L\nihn^2,L) differs from Moshinsky's bracket 

{NStnlMnihnzhiL) by a phase factor {N^nlyL\nihn2hiL) = {—\)h{]SfZnliL\nilxn2hJ^) due to the interchange of center-of-mass and 
relative quantum numbers, N£ and nl, in the definition. 
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But 
(Nn(£l)L\\ V(r 12)|| tfV(JB'Z')L) = BNNS££4W(2L+ \)^(nl| V(r) \nrl), 

where 

(n/|7(r)|fi'fl« /* R«i'*(r)V(r)Rn>{(rydr 

Jo 

and Rn/(r) are harmonic oscillator radial wave functions for a particle of mass M/2 (M=nucleon mass); 

2(»—l)I \ l ^ / r \ « /r»> / 2(»~1)1 W r y / r 2 \ 

\6,irr(»+/+j)W w W 
»=1,2 ,3 , 

J = 0 , l , 2 , 

where £' = {2ti/Mu)lli,fu)>=oscillator energy, and L,"(z) are the Laguerre polynomials. (See Ref. 24.) 
Finally we can write 

(nl\V(r)\n'l) = Z B(nh'l; p)Ip, 

(36) 

(37) 

(38) 

where 

Jo 

is defined as the Talmi integral of V. The B coefficients have been computed and tabulated, as well as the trans
formation brackets.20 Following the notation of Ref. 20, we define 

C (niVthlt; nJith'ti; L,p) = £ (N£nl,L \ mVn2h,L) (N£n%L \ mhthV,L)B (nln'I; p). 
N&nn'l 

We obtain 

((ni'/i'iiO(n2yJ2,)-1JMjTMT| *(1,2) | WIji){n%hh)~UMjTMT) 

(39) 

= -((2i1+l)(2jV+l)(2i2+l)(2i2'+l))1/2 E 
jV i / J 

rv /i i i 
1 1 C 
2 2 ° 

uV h Jj 

[h U L 
1 I C 
2 2 ° 

h J* J 

Uit)Sh (1,2) (H)5) 
X (2/+1) (2JL+1)(25+1) — £ C(ni'h'nJ*; »i W f e ' ; L,p)Ip{V). (40) 

(25+1)1'2 p 

An important feature of this method is that when fl(ri,r2) contains the Majorana space-exchange operator 
Pjif (1,2), we can use the fact that 

(ftf | |F(r«)Pif(l ,2) |^ (41) 

since exchanging ri and r2 is equivalent to the parity operator acting on the relative wave function. Therefore the 
summation in the C coefficient carries an extra factor (— t)1. In particular if $(ri,r2) is a Serber force, then the terms 
for the C coefficient only need to be summed over even values of I. 

The calculation of the diagonal matrix elements E0 is a straightforward numerical procedure. We define 

where W(A) is the total energy of the nucleus (A). Then we have 

(<3WW2*2/2rlIB|*Wz«*rl)- (#oIB|#o) = W M ) - ^ o ( i ) • 
(42) 

All of these numbers are chosen directly from the experimental data.21 The resulting eigenvalues of the secular 
determinant are the energy differences [£— ($01B | $0)]. 

Once one has diagonalized the secular matrix and found the coefficients <xK, any observable of the system may 
20 See for example, M. Moshinsky and T. A. Brody, Tables of Transformation Brackets (Universidad de Mexico, Mexico, 1960). 
21 T. Lauritsen and F. Ajzenberg-Selove, Energy Levels of Light Nuclei (Printing and Publishing Office, National Academy 

of Sciences—National Research Council, Washington, D. C , 1962). 
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be calculated. A transition matrix element of a multipole operator 9E/r is given, for example, by 

\(^JT\\^IJT\\^O)\2=\ L a j r ( n i Z l i l ) ( n 2 Z 2 ' 2 ^^ 
mkh 

= \&o\\mjr\\*jr)\2, (43) 

where the symbol || indicates reduced matrix element with respect to both isotopic spin and angular momentum. 
Note the matrix elements (nihji\\MjT\\n^2J2) in the sum are just simple single-particle matrix elements, and there 
are no extra phases in this expression. 

Let us consider in particular the calculation of the reduced matrix elements of the operator TjMel(q), defined in 
Sec. II between the ground state and a state of r = 1, MT=0. This can be written 

= ( ^ ( ^ / ^ - i ^ ^ ^ ^ ^ l l r / . r ^ f e ) ! ! ^ ) , (44) 

where tju,vel(q) is the isovector part of the single-particle operator 

1 
tjM;q

el(*)=~ £vXjj(qrmjjiM(dy<f>)2 ~V+q2jj(qr)^jjiM(e,<t>) (' 
fl / A p T A n Ap—An 

+ _ 
2Mc\ 2 

r 3 M • (45) 
Mc 2i - - - - - 2Mc\ 2 2 

Here Xp=2.8, X»= •—1.9 are the total magnetic moments of the proton and neutron. We define 

tjMeHq)=itjM,s«
l(q)+intjM,vel(q). (46) 

Using standard techniques of tensor algebra (see, for example, Refs. 14 and 23) one can calculate the j and f 
dependence of the single-particle matrix elements. Omitting the intermediate steps we obtain finally, for / = 1; 

* / 3 \1/2 

W 4 ) / l k . e l ( ? ) HIM = —{-{71+1) (2/'+1) (2j+1) (2f+1) 

X (-1)1 ' ' +i+§ 
[ i l l (l)1 

// ' 0 / + 1 \ 

0 1 1 ) \ 0 0 0 / /+1 
~(n't 

I V / + U / / + 1 1 J \ 2 / + l \ 

\ 0 0 0/ 

7+1 Mqr) 

// ' o / - i \ 

/d l\\ \ (0 1 1 1\0 0 0 / / / ', /d l+l\\ \ 

\dr r/\ / 1/ /' / - 1 J / / - 1 1 l\2l+l\ ! \dr r / I / 

\ 0 0 0/ 

-©' 

0 0 0 

(V 2 l+\ 

1+ 

/ / ' 2 f + l \ 

1 1 1\0 0 0 / /+1 

/ /' l+li/l+1 1 / \ 2 / + l 

0 0/ 

/' 2 I-1 

+ 

( 
\ 0 

//'' 2 / - 1 \ 

1 1 A o 0 6 / 1 

( # 7 + 1 MqilrJi)ln!) 

I V l-li/l-1 1 l\2l+l 

/ (d / + l \ \ 
/ »'/— 1 |/«(«r)(.—1- )\nl) 
\ i \dr r /I / f ) 

\ 0 0 0/ 

+|?(XP-X„)(-1) ! ' (18)1^ 

rr 
1 
2 

1/ 

/ 

1 
2 

3 

V\ 

1 

IJ 

//' 1 l\ 
(o o o j^ ' l^^l^ 

(47) 
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Here we define, for example, 

{nfl'\h{qr)\niy 
J a 

¥(r)Mqr)Rni(r)f*dr. (48) 

Note that these radial wave functions are defined the same way as the Rni(f) of Eq. (37) except that V is replaced 
by b= (it/Mo))112. These matrix elements when combined with the wave functions allow one to calculate form 
factors for transverse excitation of the diagonalized 1~, T— 1 particle-hole states. 

In order to carry out numerical calculations one must choose a set of single-particle wave functions; a con
venient and reasonable choice is the harmonic oscillator eigenfunctions. We choose the oscillator parameter by 
fitting the Coulomb energy differences in mirror nuclei.22 This procedure gives results similar to the oscillator 
parameter obtained by fitting to the rms charge radius in light nuclei as observed in elastic electron scattering.23 

Using these wave functions we can compute the Slater integrals or Talmi integrals directly. In order to calculate 
the single-particle matrix elements of /i,v

el(<?) we use, in addition, the following formulas satisfied by harmonic 
oscillator radial wave functions,24 Rni(r), n— 1, 2, 3, • • •: 

R2i=(l+%yi2Ru-(l+Wl2Rii+2, 

/d l\ 1 

\dr r) b 

Also 
(--
Xdr 

U+toWRw, 

Z+l \ 1 1 
k i»=-(2(2 /+l ) )WiJ iw— ( l+^Rxi+u 

r / b b 

(49) 

1 /qiy^/v \1/2 

{nMh(qr)Wi)= ( - ) (—r(«i)rW (r(ni+/1+j)r(«,+/i+4' 
r ( H - § ) \ 2 / \2<7& / 

x-

X * + § ) \ 2 / \2qb 

1 V^(h+h+2m1+2m2+v+3)) 

n i _ l n2_i (_l)mi+m 2 

))1/2 E E 
mi=0 W2=0 Ml \M2 ! 

iF1(Uh+h+2m1+2m2+v+3); „+§; -\qW), (50) 

where iF\(a; y; z) is the confluent hypergeometric treat this as a parameter, but instead choose it to fit the 
function.25 

Finally we wish to reemphasize the point made 
earlier concerning the potential v(ru); if one takes this 
model seriously, then v must be identified with the free 

low-energy n-p scattering data. 

IV. COMPARISON WITH EXPERIMENTS 

We have carried out the calculations described in the 
nucleon-nucleon interaction. One should really not previous section for the case of carbon-12. The oscillator 

TABLE I. Energy levels and wave functions for the 1 , T = 1 states in G12. The Hamiltonian was diagonalized with a Serber force, 
Yukawa well residual interaction with parameters chosen to fit low-energy n-p scattering data, as discussed in the text. 

Ex = 19.57 MeV 
* r . 

£ 2 = 23.26 MeV 
*2: 

£ 3 = 25.01 MeV 
*3: 

£4=35.80 MeV 
*4: 

*((2*»)(1^|)-1) 
£0 = = 16.86 MeV 

0.977 

0.194 

-0.088 

-0.027 

* ( ( ! * ) (I*!)"1) 
£0 = = 17.62 MeV 

-0.168 

0.952 

0.252 

-0.044 

*((!*) (W1) 
£0 = = 22.11 MeV 

0.133 

-0 .211 

0.933 

0.260 

*((!**) (I*)"1) 
£0= =30.05 MeV 

-0.016 

0.106 

-0.243 

0.964 

22 B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954). 
23 R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957). 
24 R. Willey, Nucl. Phys. 40, 529 (1963). 
25 P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, 

p. 784. 
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parameter was chosen from Ref. 22 as the average of the 
parameters for C11 and C13; we found this to be 6=1.6 F. 
For a set of basis states we chose the four lowest energy 
shell-model particle-hole states: 

* / . ! -T -X^*)dP i r i ; Eo((2s.) (1 j f)-i) = 18.72-1.86 
= 16.86 MeV. 

^ - i - . r - i ^ i ^ " 1 ; JB0((W|)(l#i)-1) = 18.72-1.10 
= 17.62 MeV. 

*j-i-,r-ia<,» ) (1*» r l; fio((W|)(l#i)""1)= 18.72+3.39 
= 22.11 MeV. 

^-i-.r-i*1**' W1; EoUlpd (l^)"1) = 35-4.95 
= 30.05 MeV. 

For a potential »(1,2) we chose a Serber force with 
parameters adjusted to fit low-energy n-p scattering 
data; 

v(l}2) = lh(r12yP+h(r12yPl(K^+PM(h2)-]), (51) 

where 
i2>=l(l-<ri-<ra), »P=l(3+cri.iF2) 

and Pjf(l,2) = Majorana exchange operator. As a first 
choice we took v(ru) to be a Yukawa well; the parame
ters for this case are given in Table VI of Ref. 15. 

e-nru 

v(r12)=V0 ^0=-46 .87 MeV, V = 0.8547 F"1, 

3F 0=-52.13 MeV, 3/x = 0.7261 F"1. 

With this choice of potential we computed the Talmi 
integrals Ip and the matrix elements of v between the 
basis states. The 4X4 Hamiltonian matrix was then 
constructed and diagonalized with the aid of the 
IBM-7090 computer at the Stanford University 
Computation Center. 

The resulting eigenvalues and eigenstates are given 
in Table I. 

Experimentally the giant resonance is observed as a 
single broad peak with a maximum at 22.5 MeV in the 
photoabsorption and (p,yo) experiments.26 In the 
electron scattering experiments27 a broad peak is also 
observed in the same energy region, but with its 
maximum shifted upward to about 24.5 MeV. Therefore 
we interpret the dipole transitions in this energy region 
in terms of the two states ^2 and ^3. Note that we have 
assumed that practically all of the transition strength 
observed in electron scattering in the giant resonance 
region comes from El transitions. The single-particle 
Weisskopf estimates for Ml, E2, and M2 transitions in 
electron scattering at q= 120 MeV/c and Efi=20 MeV 
are 10 to 15% of the experimental cross sections ob
served in electron scattering data at these momentum 
transfers for the giant resonance.12,27 

26 H. E. Gove, A. E. Litherland, and R. Batchelor, Nucl. Phys. 
26, 480 (1961). 

27 J. Goldemberg (to be published). 
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FIG. 1. Squared form factor versus momentum transfer for the 
giant dipole resonance in carbon-12. 

Finally we calculate the squared inelastic form 
factors for transverse electric excitations of each of 
these states using the techniques of Sec. III. The total 
cross section for transitions into the giant resonance is 
then proportional to the sum of the absolute squares of 
the form factors | (J=l~, r= l | | r i e l (g ) | | /=0 + , J = 0 ) | 2 

for the states ^ 2 and ^3. We call this sum the "square 
of the form factor of the giant resonance"; this quantity 
is plotted as a function of q in Fig. 1. 

As was pointed out in Sec. II, the cross section for 
inelastic electron scattering at 180° depends only on 
the transverse multipole excitations. For excitation of 
the giant resonance (J=l~) only 7\el(g) contributes 
and the cross sections can be used to calculate the 
matrix elements of this quantity directly. These cross 
sections have been measured and reported in Refs. 11 
and 12 for incident electron energies of 41.5 and 55 
MeV. The two resulting squared form factors for 
momentum transfers 60 and 87 MeV/c are also shown 
in Fig. 1. (We have chosen a "mean excitation energy" 
of 23 MeV in our kinematical calculations.) 

Finally we have used the formula (4) given in Sec. 
II to obtain the experimental value of the squared form 
factor at a momentum transfer of 23 MeV/c. The 
integrated photoabsorption cross section over the giant 
resonance in carbon has been measured by many people 
both for (Y,») and (y,p) [or, (^,70)] reactions. We have 
taken an average of several reported measurements of 
the (y,n) cross section28-30 and also of the (y,p) [or 

28 R. Montalbetti, L. Kate, and J. Goldemberg, Phvs. Rev. 91, 
659 (1953). 

29 R. Nathans and J. Halpern, Phys. Rev. 93, 437 (1954). 
30 W. C. Barber, W. D. George, and D. D. Reagan, Phys. Rev. 

98, 73 (1955). 
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PHOTOABSORPTION 

q * 2 3 MeV/c 
ELECTRON SCATTERING 

q*60 MeV/c I q«90 MeV/t 

10 20 30 40 
E (Mev.) 

10 20 30 40 0 10 20 30 40 
E (MeV.) 

10 20 30 40 

FIG. 2. Relative transition probabilities for transverse excitation 
of the 1~, T~\ states in carbon-12. The length of each line is 
proportional to the square of the form factor for excitation of the 
corresponding state at the given energy and momentum transfer. 
The two types of residual interaction indicated are discussed in 
the text. 

(p,yo)2 cross section26'28'31'32 and added the results. 
[The (p,yo) data were related to the (yyp) cross section 
by means of the detailed balance theorem.] The re
sulting squared form factor is shown in Fig. 1. The 
error bars on this point are drawn to represent the 
degree of variation in the results obtained by various 
different authors. 

We wish to point out that the theory predicts that 
there is a dip in the squared form factor which is 
clearly seen experimentally. This arises because the 
giant resonance is composed of two states, ^ 2 and ^3 . 
As the momentum transfer q increases the squared form 
factor of \I>3 increases while that of SFu decreases. The 
sum therefore goes through a minimum. 

This can also be clearly seen in Fig. 2, where we have 
indicated the squared form factors, or relative transition 
strengths, for all four states at several values of q. 
(These are labeled "Serber Force, Yukawa Well.") The 
theory predicts that there is a peak in the cross section 
as a function of energy, and also that this peak shifts 
upward by about 2 MeV as q increases from 23 MeV/c 
to ~90 MeV/c. A comparison of the photoabsorption 
data26'28-32 with the electron scattering data of Ref. 12 
confirms the existence of this shift in the position of 
the resonance. Again, this shift arises because as q 
increases there is a shift of transition strength from ^ 3 

to ^2 . 
The observed (1~, T=l) state at 17.2 MeV in21 C12 

has also been resolved in the (>,YO) experiments26 as 
well as in some of the electron scattering experiments.12 

We describe this state by the wave function ^ i , and 
we have plotted the squared form factor for excitation 

of this state in Fig. 3 (labeled "Serber force, Yukawa 
well"). 

By starting with the relative Bu(p,yo)C12 cross 
sections in which the intermediate state of carbon-12 
is the giant resonance or the 17.2-MeV state (see, for 
example, the 7-ray deexcitation curves shown in 
Ajzenberg-Selove, Ref. 21) and using the detailed 
balance theorem, we have estimated the integrated 
photoexcitation cross section for the 17.2-MeV state 
to be about 5% of that for the giant resonance. The 
resulting squared form factor for the 17.2-MeV state 
is shown in Fig. 3. Finally we have used the electron 
scattering data in Ref. 12 to estimate the cross section 
for excitation of the 17.2-MeV state at 90-MeV/c 
momentum transfer, and the resulting squared form 
factor is also shown in Fig. 3. We see that the tendency 
for the squared form factor to increase with q as pre
dicted by the theory is reproduced by the experiments. 

Finally let us point out that the theory predicts a 
sizeable form factor for the state at ^36 MeV which 
we describe as ^4 , and in fact this form factor should 
grow very large at larger momentum transfers (see 
Fig. 2). Some evidence for the existence of this state 
has been reported from ( ,̂70) experiments,33 and pre
liminary electron scattering results at27 g~100 MeV/c 
definitely indicate a large bump at about the right 
energy to correspond to this state. Let us emphasize 
here that the predictions of the theory for all four states 
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FIG. 3. Squared from factor versus momentum transfer for the 
/ « 1 - , r = l state at 17.2 MeV in carbon-12. The two types of 
residual interaction indicated are discussed in the text. 

31 V. J. Vanhuyse and W. C. Barber, Nucl. Phys. 26, 233 (1961). 
32 W. R. Dodge, Stanford University, W. W. Hansen Labora

tories of Physics, H.E.P.L. Report No. 246, 1961 (unpublished). 

33 N. W. Reay, N. M. Hintz, and L. L. Lee, Jr., Nucl. Phys. 44, 
338 (1963). 
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FIG. 4. Energy levels of the 1~, T=l states in carbon-12 as a 
function of the residual interaction strength. The interaction used 
was a Serber force with a Yukawa potential well. We have also 
indicated the range of energies occupied by the giant resonance 
in C12 as observed in electron scattering. 

elements by varying X and holding the configuration 
energies fixed. The resulting energy levels are shown as 
functions of X in Fig. 4. 

We have repeated the entire calculation using other 
types of forces for the form of fl(l,2), not necessarily 
chosen to fit the free nucleon-nucleon interaction. One 
choice we studied was the "ordinary force with zero 
range," 

t>(l ,2)=-M(ri-r2) 

similar to the calculations described in Ref. 7. Here 
again we calculated the matrix elements of »(1,2) 
between the same basis states, this time using the 
technique of Slater integrals described in Sec. I l l 
along with the same oscillator wave functions. These 
were expressed in terms of VQ which was left as a free 
parameter. The resulting 4X4 matrix was diagonalized 
as before for various values of VQ. 

The energy levels are plotted in Fig. 5 as functions 
of X=flo/£3X10~3, where b is the oscillator parameter 
discussed before. We have also indicated in this figure 
those values of X which one would compute from low-
energy n-p scattering data by averaging VQ— —J%v{x)dzr 
over the various potentials given in Table VI, Ref. 15. 
These give us the singlet parameter X, and the triplet 
parameter X*; we define X=fXs+fXf. All three values of 
X are shown in Fig. 5. 

The parameter X was then chosen to fit the known 
r = l , J=l~ energy levels in carbon-12. We took 
X=0.10MeV, or 

*;o=410MeVF3, 

agree with the experiments both in energies as well as 
in the form factors. At this point we have a theory with 
no adjustable parameters; the unperturbed configu
ration energies come from the energies of C11 and C13, 
the oscillator parameter (the only nuclear parameter 
involved) comes from fitting Coulomb energies, and 
the two-particle force is taken from free nucleon-
nucleon scattering. 

We now want to discuss the sensitivity of this result 
to the details of the theory. In particular we are inter
ested in the effects of variations in the form of fl(l,2), 
both in order to study the sensitivity to different types 
of nucleon-nucleon potentials and to compare with the 
calculations made by other authors. 

The calculations discussed so far have all been made 
using the Yukawa potential well shape described earlier 
in the two-particle interaction »(1,2). We have also 
calculated the Talmi integrals using a square well with 
parameters again taken from Table VI, Ref. 15, to fit 
low-energy n-p scattering data. The resulting energy 
eigenvalues and eigenvectors are the same within a 
few percent as those using a Yukawa well. 

Furthermore, we have studied the dependence of 
the energy eigenvalues on the interaction strength by 
replacing fl(1,2) by Xz>(l,2) and varying the matrix 

,X,MeV 

FIG. 5. Energy levels of the 1~, T=l states in carbon-12 as a 
function of the residual interaction strength. The interaction used 
was an ordinary force with zero range. The parameter X is dis
cussed in the text. We have also shown the values of X corre
sponding to the singlet and triplet parts of the free nucleon-
nucleon interaction. 
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FIG. 6. Squared form factor versus momentum transfer for the 
giant dipole resonance in carbon-12. The solid curve is calculated 
using a spin-dependent force with zero range for the residual 
interaction. The dashed curve is calculated using an ordinary 
force with zero range for the residual interaction and leaving the 
high-lying basis state at 30 MeV out of the calculation completely. 
The long dash-short dash curve is calculated using a Serber force 
with a Yukawa potential well for the residual interaction; this 
curve is the same as in Fig. 1. We have also shown the curves 
calculated using the collective models. 

which gave us two levels, as shown, at 24.01 and 20.84 
MeV in the observed region of energy of the giant 
resonance and also two levels at 18.24 and 33.76 MeV. 
(This value of vo is about the same as that chosen in 
Ref. 7.) The squared inelastic form factors for all four 
states were then calculated, and are shown in Fig. 2. 
The squared form factor of the 18.24-MeV state which 
we identify with the observed state at 17.2 MeV is also 
shown in Fig. 3, and the squared form factor is a factor 
of 4-6 too large in magnitude with the 5-function force. 
This result indicates that the structure of the 17.2-MeV 
state is very sensitive to the two-body force used. The 
squared form factor of the giant resonance is again 
taken to be the sum of the squared form factors of the 
two states in the giant resonance region, and the result 
is the same to within a few percent as the curve for the 
spin-dependent zero range force shown in Fig. 6. Com
parison with the result for the Serber force indicates 
that the form factor for the giant resonance is not 
particularly sensitive to the two-body force used. We 
wish to emphasize that the method of choosing v0 as 
described above yields a value of X which js at least 2 
or 3 times smaller than the values (X,XS,X*) corre
sponding to the free nucleon-nucleon interaction. 

This calculation was also modified in several 
ways. First we left the high-lying basis state 
^j-i-,r-i ( lp* ) (1** r l out of the calculation completely 
and diagonalized the interaction among the three 
remaining basis states. Choosing the same value of vQ 

as before we obtain three states at 24.49, 20.88, and 

18.25 MeV. Choosing the cross section of the giant 
resonance again to be the sum of the cross sections to 
the first two states we obtained a squared form factor 
which is shown in Fig. 6. This gives an indication of 
the sensitivity of the calculation to higher basis 
configurations. 

Secondly, we chose z>(l,2) to be a spin-dependent 
force with zero range, 

»(l,2)=-v0[(l-i?)+i?<Fi-<r2]5(ri-r2) 

with i) chosen so as to yield the same singlet/triplet 
ratio for the volume integral of the potential as that 
of the free interaction. Using parameters chosen from 
Ref. 34 we obtain a value rj=0.064. This potential was 
then diagonalized among the four basis states. The 
resulting eigenvalues and eigenstates were identical to 
within a few percent to those from the ordinary force 
zero-range calculation. The form factor of the giant 
resonance for the spin-dependent force calculation is 
also shown in Fig. 6. This calculation was also reported 
in Ref. 12. 

Finally we chose »(1,2) to be an "ordinary force, 
finite range"; in particular, we chose a Gaussian well 

KrilM,c(q)IIO+>l2 

K H I T . ^ q J I l o V 

100 2 0 0 3 0 0 4 0 0 500 
Momentum Transfer q **§* 

6 0 0 700 

FIG. 7. Longitudinal and transverse squared form factors versus 
momentum transfer for the giant dipole resonance in carbon-12. 
The curves are calculated using a spin-dependent force with zero 
range for the residual interaction. 

34 L. Hulthen and M. Sugawara, Handbuch der Physik, edited 
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 1. 
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shape 
fl(l,2)=-F0e~(r/o)2. 

Here we chose a =1.43 F to fit low-energy scattering 
data for the range of the triplet part of the n-p force. 
Matrix elements were computed using the Slater 
integral techniques discussed in Sec. I l l and the 
Hamiltonian was diagonalized among the four basis 
states. By choosing Fo=20 MeV we obtained states 
at 19.22, 20.84, 24.55, and 34.34 MeV. The volume 
integral of this potential is 80% of that chosen in the 
zero-range calculations. Note that if one analyzes low-
energy n-p scattering data with a Gaussian potential, 
one obtains Fo=79 MeV. (See Refs. 34, 35.) The wave 
functions obtained in this calculation resemble those 
of the Serber force calculation rather than those of the 
zero-range force calculations, and the squared form 
factors are therefore also within a few percent of the 
Serber-force squared form factors. 

One can therefore conclude that the type of exchange 
mixture in the force influences primarily the position 
of the energy levels as a function of interaction strength, 
while the wave functions themselves are more sensitive 
to the range of the force. 

The form factors discussed up to now have all been 
for transverse excitation of the levels. We have also 
calculated the form factor for Coulomb excitation of 
the giant resonance using the states obtained from the 
spin-dependent force calculation; these form factors 
are the reduced matrix elements of the operator Mi(q), 
where Mj(q) was defined in Sec. II. The transverse and 
longitudinal squared form factors for the giant reso
nance in C12 are shown in Fig. 7 out to large values of q. 

Note that both squared form factors show the ap
pearance of a minimum in the region g= 200-300 

T 1 1 
-Goldhaber-Teller Model 

20 40 

Momentum Transfer q , 

60 
MeV 

FIG. 8. Squared form factor versus momentum transfer for the 
giant dipole resonance in aluminum-27. The solid curve is cal
culated using the Goldhaber-Teller model and the dashed curve 
is calculated using the Steinwedel-Jensen model. 
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FIG. 9. Squared form factor versus momentum transfer for the 
giant dipole resonance in krypton-84. The solid curve is calculated 
using the Goldhaber-Teller model and the dashed curve is cal
culated using the Steinwedel-Jensen model. The experimental 
point at q—lS MeV/c is the squared form factor measured in 
rubidium-87. 

MeV/c. This minimum occurs because the formula (50) 
for the radial matrix elements of jv{qr) generally 
contains zeros from the hypergeometric functions, 
and the zeros for the various different terms tend to be 
near each other. 

We have also calculated the form factor of the 17.2-
MeV state for both transverse and Coulomb excitation 
at large values of q. One finds at q^500-700 MeV/c 
that the squared form factors of this state are several 
times larger than those of the giant resonance, and 
also that the longitudinal form factor is dominant over 
the transverse form factor. Preliminary inelastic 
electron scattering data in carbon-12 using incident 
electron energies of 800 MeV have been taken by 
Crannell at the Stanford Mark III linear accelerator. 
At ^40° scattered electron angle (i.e., momentum 
transfers <p^500-600 MeV/c) the data show a peak in 
the cross section at a scattered electron energy 18 MeV 
down from the elastic peak. An analysis of this data 
was made by neglecting the transverse excitation and 
using the formula in Sec. II to obtain the longitudinal 
squared form factor from the scattering cross section. 
The results at present are in agreement with the theory 
within experimental error. 

Finally we have also indicated in Fig. 6 the squared 
form factors of the giant resonance obtained from 
collective motion models. The Goldhaber-Teller model 
(Ref. 1) calculation is discussed in Ref. 11. We have 
also shown the squared form factor obtained from the 
Steinwedel-Jensen model36 calculation discussed in 
Appendix A. Note that this theory contains one parame
ter, the symmetry energy constant K from the semi-
empirical mass formula. In order to obtain the giant 

35 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949). 

36 H. Steinwedel and J. H. D. Jensen, Z. Naturforsch, 5a, 413 
(1950). 
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resonance at an energy of 23 MeV it was necessary to 
choose K= 15 MeV, which is 60% of the value obtained 
in other experiments.37 

The collective model calculations have also been 
compared with the electron scattering data for Al27 and 
Kr84 which were reported in Ref. 11. The squared form 
factors are shown in Figs. 8 and 9. The symmetry 
energy parameter for these two nuclei yielded the 
correct energy for the same value of K as given in Ref. 
37. The data points for the lower values of q were taken 
from photoabsorption data given in Ref. 28. These 
authors did not report any results for Kr84, but instead 
we have plotted the point corresponding to Rb87. This 
point appears to give an anomalously large value for 
the squared form factor, and one of the authors in 
Ref. 28 (J. Goldemberg) has informed us that these 
experiments are being repeated and photoabsorption 
data are being taken for Kr84. 

V. DISCUSSION AND SUMMARY 

It is perhaps a good idea to first summarize the results 
of the present paper. The Brown theory has been re
formulated in terms of the usual Tamm-Dancoff shell-
model calculation. The two-particle potential in the 
nuclear Hamiltonian is taken to be that obtained in 
free nucleon-nucleon scattering. The calculations of 
Brown et al? are repeated with this two-nucleon force 
for C12. The ground state of C12 is taken to be 
(lsi)4(l£f)8. The T=l, JT=1~ states are taken as 
linear combinations of the lowest lying states of T= 1, 
J * = l - in C12 which are (2**) (lft)-1, (l<*f) (lft)-1, 
(ld§)(lft)_1, and (1ft) (Is*)-1. The Hamiltonian matrix 
between these states is then computed, and most of 
the interaction matrix elements can be identified with 
energy differences of C12 from C11 and C13. This identifi
cation comes from merely rewriting many of the 
diagonal terms of the matrix. A similar identification of 
such terms was also used in the intermediate coupling 
calculations of Elliott and Flowers. The off-diagonal 
matrix elements, for the class of states considered 
for the T—l, JT=1~ states in light nuclei, only 
involve simple matrix elements of the two-particle 
potential. The radial wave functions are taken to be 
harmonic oscillator wave functions in computing the 
particle-hole matrix elements and the oscillator parame
ter is taken from fitting Coulomb energies. The resulting 
calculation of energy levels by diagonalization of the 
matrix and form factors from the wave functions 
obtained contains no free parameters. All the input 
data is taken from other experiments. The resulting 
four dipole states are at energies 19.57, 23.26, 25.01, and 
35.80 MeV. The first state is identified as the known 
r = l , J = l - state at 17.2 MeV in C12. It is thus 2.4 
MeV too high. The computed transverse electric form 
factor of this state turns out to be in very good agree
ment with the experimental results of Goldemberg et al. 

37 A. E. S. Green, Phys, Rev. 95,1006 (1954). 

and the one point on the form factor curve which can 
be obtained from photoabsorption. The sum of the two 
squared transverse electric dipole form factors for the 
23.26 and 25.01 states is also in agreement with the 
photoabsorption and electron scattering data. More
over, it shows a quite remarkable dip in the region 
q<!50 MeV/c which is observed experimentally. The 
analysis of the contributions of the two states (Fig. 2) 
shows that in photoabsorption, one should just see one 
large peak at 23.26 MeV (this is actually observed and 
comes at 22.55 MeV) with only perhaps a very small 
shoulder at 25.01 MeV. As the momentum transfer is 
changed, however, the strength of the 23-MeV level 
decreases while that of the 25 MeV increases leading 
not only to the dip described above, but also to an 
upward shift of 2 MeV in the resonance energy which 
is also observed experimentally. The state at 35.80 MeV 
has been observed in (p,y) work. Our calculations indi
cate, however, that for q> 150 MeV/c this state actually 
has most of the dipole strength. There are preliminary 
indications that this is observed in the electron scat
tering. Attempts to fit the giant resonance form factor 
in C12 with either the Goldhaber-Teller or Steinwedel-
Jensen collective models lead to completely wrong form 
factors. The two main points we want to make in the 
paper are: 

(1) The electron scattering form factors are very 
sensitive to the structure of the states involved indi
cating again that electron scattering is a tremendously 
powerful tool in studying nuclear structure. 

(2) The particle-hole picture of the giant resonance 
seems to be in quite remarkable agreement with the 
main features of inelastic T— 1, J*= 1~ form factors. 

To determine the sensitivity of our result to the force 
used we carried out several calculations with different 
forces. These calculations are described in Sec. IV. The 
main results can be summarized as follows: 

(1) The form factor for the giant resonance was 
quite insensitive to the force used. The dip appeared 
in every calculation we made. The energy of the state 
was sensitive to the force. A delta-function interaction 
had to have a strength much less than a comparative 
volume integral of the free nucleon-nucleon force to 
get the levels in the right place, while with the free 
two-nucleon Serber force (which has no interaction in 
the odd angular momentum states) the levels came out 
correctly. Adding the spin dependence of the free 
nucleon-nucleon force changed almost nothing. 

(2) The form factor of the 17.2-MeV state turned 
out to be very sensitive to the interaction since this 
state gets most of its strength from the admixture of 
the higher lying ^-particle states. Again the free Serber 
force gave a form factor in agreement with experiment 
while the 6-function force gave a result 4 to 6 times too 
large. 

To determine the sensitivity of our result to the type 
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of states admixed we carried out one calculation of the 
giant resonance state leaving out the ( l ^Xl^ ) " 1 state 
with £0=30.05 MeV and the result is shown in Fig. 6. 
The difference is appreciable at large q and indicates 
that for any more really quantitative fit to the data 
one must include two-particle two-hole states etc., 
although work by Brown shows such states do not play 
a dominant role in T—\ states.7 There is one other 
piece of evidence that such states may be important 
in the ground state. If one tries to fit the inelastic 
magnetic dipole form factor of the T= 1, /== 1+ state 
at 15.1 MeV in C12, which according to Brown7 is a pure 
(l^i)(l^f)_1 state, then one obtains a squared form 
factor which is about a factor of 4 too large. The 
intermediate coupling calculation of Kurath, which 
contains a large admixture of other types of states 
however, gives the correct 7-absorption cross section 
for this 15.1-MeV state. One is tempted to conclude 
that the Brown theory is just much more successful 
for the 1~~ states because these states must be made up 
of particles promoted to the next oscillator shell and 
can't be obtained by merely recoupling particles within 
the p shell. It should be mentioned here that calcu
lations of T= 1,1~ levels in Pb208 have been carried out38 

using the particle-hole theory, and good agreement with 
experiment is obtained without the inclusion of ground-
state correlations. However, calculations of other states 
(3~,4+) in Pb208 using the particle-hole theory39,40 yield 
considerably poorer agreement with experiment, which 
supports the conclusion that the restriction to one-
particle, one-hole states is particularly successful only 
for T= 1, 1~ states. It has also been shown41 that the 
inclusion of two-particle, two-hole states can be sig
nificant for other nuclei with unfilled shells. 

In our calculations we have not treated the center-
of-mass motion correctly. Elliott and Flowers did this, 
and found the results were only important in T=0 
states. This is evident since the spurious 1" state 
corresponding to pure center-of-mass motion must be 
T=0 since any other T cannot be just a translation of 
the whole system. 

Also let us emphasize that the form factors which 
we have computed are for transverse excitations, and 
are therefore dependent on the details of the nuclear 
convection current and magnetization density [Eq. (3)]. 
It is the matrix elements of these operators which one 
measures experimentally in photoexcitation and 180° 
electron scattering, and which are successfully predicted 
by the Brown theory. However, for small values of 
qfi=Efi/fic one can apply the equation of current 
conservation in order to rewrite the transverse electric 

38 V. V. Balashov, V. G. Shevchenko, and N. P. Yudin, Zh. 
Eksperim. i Teor. Fiz. 41,1929 (1961) [translation: Soviet Phys.— 
JETP 14, 1371 (1962)]. 

39 J. C. Carter, W. T. Pinkston, and W. M. True, Phys. Rev. 
120, 504 (1960). 

40 W. T. Pinkston, Nucl. Phys. 37, 312 (1962). 
41 M. V. Mikhailovic and M. Rosina, Nucl. Phys. 40, 252 (1963). 

dipole moment operator for photoabsorption (Siegert's 
theorem): 

T1M
Ql(qfi)^- W/Qq/i j ^XXPN(X)Y1M(^) , (52) 

which only depends on the nuclear charge density. If 
one now uses the Brown theory to calculate matrix 
elements of this quantity for photoexcitations into the 
giant resonance in order to compare with the experi
mental data, one finds that the Brown theory gives a 
squared form factor which is larger than experiment by 
a factor of —2. One could conclude from this that the 
Brown theory correctly predicts the matrix elements 
of the current and magnetization, but it fails to give 
the right matrix elements of the transition charge 
density. Another way of looking at this is to compare 
the expression for TiM

el(qfi) CEq« (52)] w i t n t n e matrix 
element predicted by the Brown theory: 

V2/C0osc\ 

(l-riel(^)l|0+)^-y(^--j 

X^ 3 x( l - | | ^ (x)F 1 (O x ) | |0+) . (53) 

Here fio)08G is the energy parameter used in defining the 
harmonic oscillator single-particle wave functions. We 
see that the Brown theory replaces hcq/i=Efi by fcosc, 
so that on squaring one obtains a factor 

/feosc\2 /15MeV\ 2 ^ 

\Efi/ \23MeV/ ' 

This is essentially the origin of the factor of 2 dis
crepancy mentioned above. If one had really con
structed exact eigenstates of the total Hamiltonian, 
the two methods of calculation [Eq. (52)] must of 
course give the same results. This is a drawback with 
any theory that uses approximate wave functions. We 
should emphasize that we must deal with the transverse 
multipoles of the current and magnetization if we want 
to compare with electron scattering since there one 
cannot work in the long-wavelength limit. We should 
also add that the current operator which we used had 
no specific meson-exchange current contributions, but 
only contained convection and magnetization parts. 
The question of the contribution of meson-exchange 
currents to the transverse form factors is still an open 
one. 

One of the most important successes of the Brown 
theory, as was mentioned before, is the prediction of 
the dip observed in the squared transverse electric form 
factor of the giant resonance, which occurred in every 
shell-model calculation which we made. This basic 
feature of the shell model can be understood quali
tatively in the following way. Let us, for simplicity, 
turn off the two-particle residual interaction so that 
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^2 and ^ 3 are simply the basis states ^>J==I-,T=I(1^) ( l p f r l 

and ^j=i-,2'-i(ld|)(lp*)~1, respectively. (These basis 
states are, in fact, the principal components of ^ 2 and 
^3 as seen in Table I, for example.) The form factors 
of these states can be separated into two contributions, 
one coming from the convection current jjv, and the 
other arising from the intrinsic magnetization density 
VN [see Eq. (3)]. For small values of momentum 
transfer (i.e., 0<g<100 MeV/c) the absolute magni
tudes of these two contributions behave differently 
from each other (they behave roughly the same way 
for both states). The convection current contribution 
decreases somewhat in absolute magnitude as q in
creases, while the magnetization contribution starts at 
zero and increases rapidly in absolute magnitude as q 
increases. For the state <&j==;r,!r=i(1^)(lp!rl these two 
contributions add destructively, so that the squared 
form factor of this state is due to a large convection 
current contribution at small q, and rapidly decreases 
as q increases, actually reaching a minimum at #^100 
MeV/c (for larger q the squared form factor increases 
again). The other state ^ „ i - , r - i ( l d | ) ( l p | r l has only a 
small convection current contribution (note that this 
is a spin-flip transition) so that its squared form factor 
is primarily just due to the magnetization contribution, 
and therefore increases rapidly with q. These two 
squared form factors vary so rapidly that even if these 
states are mixed with other 1~, T==l states to form 
^2 and \E% the squared form factors still show the same 
behavior, i.e., they are dominated by these two basis 
states. The squared form factor of the giant resonance 
is therefore essentially the sum of an increasing function 
and a decreasing function of q, which then has a mini
mum in the region under consideration. 

Calculations similar to the preceding have been 
applied by one of us (F.H.L.) to the El form factors 
in O16 with also quite remarkable success and will be 
discussed in a forthcoming publication. 
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APPENDIX A: HYDRODYNAMICAL MODEL 

In this model36 the neutrons and protons are treated 
as two interpenetrating fluids inside a rigid spherical 
volume with constant total density, 

Z N 
Pp(r,t)+pn(t)t) = p0 = pp

0+Pn° = —pQ-\ P0, (Al) 
A A 

where 

The interaction between these fluids arises from the 
nuclear symmetry energy37,42'43 

E.=KZ(N-Zy/Al (A2) 

via the energy density €(r,£), which has the static 
equilibrium value 

(Pn°-Pp°)2 

e<*=K -, i£^24MeV.37 

Po 
Using the definitions 

y(Y,t)=pp(*,t)—pp°, pr= 
PnW 

PO 
(A3) 

v (t,t) = \p (x,t)—\n (tyi) (flow velocities), 

V = (po)-1 (pnVn+PpVp) , 

and assuming 

V=0 and V x v = 0 , i.e., v=-V0( r , / ) , (A4) 

we have, to first order in TJ and </>, the Lagrangian: 

L= / dh\ - * ) pr{v4>Y (A5) 
J I 16K\dt / 2 J 

together with the subsidiary condition (continuity 
equation) 

(d/«)i?+PrV-v=0. (A6) 

The resulting equation of motion44 

<d2 SK NZ /d2 8KNZ \ 
V1Mr,0 = 0 (A7) 

\dt2 MA2/ 
together with the boundary condition 

Sr 
= 0, where R=rQA1^ (A8) 

lead to the complete set of orthonormal modes for ij: 

fomn(r)=A lmnji(kinr)Yim(6,<l>), 

.=—[Wi- *(H-1)\T1/* 

klnW •} 

SKNZ 
u2~ , 

M A2 

d 
kinR is the (^+l)th root of —ji(kinr) 

dr 

n=0,l,2, 

(A9) 

= 0, 

f7rr0
3po=l, r0^1.4XlO-13cm. 

42 C. F. von Weizsacker, Z. Physik 96, 431 (1935). 
43 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 

(John Wiley and Sons, Inc., New York, 1952), Chap. VI. 
44 H. Goldstein, Classical Mechanics (Addison-Wesley Pub

lishing Company, Inc., Reading, Massachusetts, 1959). 
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where jv(%) are the spherical Bessel functions24 and nance is given by 
Yim are the spherical harmonics.14 

We introduce the canonical commutation rules for (l~||Tiel(g)||0+)=v3(0| aioo^Tio8l(̂ ) 10), 
0 (r,/) and w (r,/) = — dL/d (d<£ (t,t)/dt) in the Schrodinger 
representation; wnere 

C*(r),*(r/)]= [x(r),T(r /)]=0, T^6l(q)=- J dVjVW• V X i i ^ S n i ^ , * ) 

[*(r),T(r0]=i*«(r-O. and ? 

Expanding g2\r(r)=pp(r)v,(r)S-prV0(r). (A19) 

* W = £ { a h , n W ' X ( r ) = £ ^ n ^»* ( r ) ( A U ) Integration by parts yields only a surface term since 
VXJivW = 0. Using the identities14 

and defining 
1 

* V* , , _ «hii"(*,*H—(rXv)ri j , (0,*) , 
gZmn=( ) [^mn+(-l)m^-mn+], , _ _ ~ ' M 

(A12) (A20) 

^mn = f(i(M^n))1/2[^mn
t-(-l)mtf«-mn], r • V FiJf (0,*) = 0 , (V2+~Vijf(0,0) = 0 , 

where , 
f 1̂ 2 /Q ?r w e obtain 

we obtain the Hamiltonian ^iMel(?) = i 1(g*)Pr 

r r 4i£ Mpr i 
H=J ^ 1 ^ 2 + T " ( V * ) 2 J xffdatVlr^YMo,*), (A21) 

= ]£ ^COzn[^Zmnt^Zmn+J] (A13) 
ImW ft2 /NZ\2 1 

I (i-||r^(g)I|o+)|2=24—POR*K(—) — 
together with the commutation rules M2c2 \A2/ fua 10 

XJ&lmnftVm'n' J — Vll'bmm'Un 

The operator 

(A14) X ii(g«)ii(*ioR)J • (A22) 

APPENDIX B: PHOTOEXCITATION 
i 

L = - J2 pim'nQ/fnf\l>op\lw>)qimn, (A1S) The integrated cross section for photoexcitation of 
* lwWMI*' the nucleus into an excited state <j>n by a photon (k,X) 

where i s g i v e n by45 

(fo*'|Lop|&») = J (dttYlm,*(£l)[_-itxv]FZm(0) 

satisfies / °"(«)**=—°<I (*» I ffi I *o,kX) 12)av, (B1) 
LXL=^L. (A16) Jabs line »V 

It is »<?*, however, the kinetic angular momentum of where 12 is the "volume of the universe" and 
the system, which is actually zero in this model. The 
state aimJ | 0) diagonalizes L2 and Lz with eigenvalues t / I * J^ 
1(1+1) and m. (** IH l I *°>kx) = I *» I S Z_ r 

The giant resonance is taken to be the low-lying 1~ 
s t a t e : r2ire2fic2 11/2 

|lw0) = aim0t|0). (A17) x (2/+1) {TjM
QKk)+\TjM^(k)} 

This has an energy 

ft /SK NZ\112 X^>M\J(—<t>k, —Ok, <l>k)\(t>o), (B2) 
£coio=2.08—( J . (A18) ' 7 

R\M A2 / 45 w Heitler, TAe Quantum Theory of Radiation (Clarendon 
Press, Oxford, England, 1954), 3rd ed.; see also Ref. 43, Appen-

The transverse electric form factor of the giant reso- dix B. 
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* 2we2fic2 
where DM\J are the rotation matrices defined in Rei 
14. If the initial and final states are both eigenstates 
of J2 and parity, then 

I (Jf7rf\\Tj^q)+^Tj^(q)\\J^j2 

•=\(Sf*f\\Tfl(q)\\J*ri)\* 
+ \(JfTf\\TJ^(q)\\J^i)\

2 (B3) 

since one or the other term must vanish. 
Using the techniques in Edmonds (Ref. 14) to 

perform the sum over final nuclear orientations and 
average over initial nuclear orientations and photon 
polarizations X we find 

<|(*n|ffi|*o,kX)|V= 
/- i 2&a>fc 2/»+l 

X{| (Jf\\Tjm\\Ji)\2+\ (Jf\\Tj»»*(k)\\Ji)\*}. (B4) 
Hence, we obtain the formula (4) given in Sec. I I : 

/ -
(E)dE= (2x)3-

aifrcf 1 

Efi 2Jt+l 

xE{|( / / | | r /"(*) | | /0 l s 

+ \(Jt\\Tja"(k)\\Ji)\t}, (B5) 
where Efi—tick and a=e2/4ir:hc is the fine-structure 
constant. 


